Activity
Publications
2025
5) Mild and Selective Hydrogenation of Furfural and Its Derivatives to Tetrahydrofurfuryl Compounds Catalyzed by Aluminum Oxide-supported Nickel Carbide Nanoparticles.
ACS Sustainable Chemistry & Engineering, 2025, 13, 7994-8002.
T. Kawakami, S. Yamaguchi, S. Suganuma, K. Nakajima, T. Mitsudome, T. Mizugaki
4) Green Synthesis of Iron Phosphide Nanoparticles with High Catalytic Activity for Liquid-Phase Nitrile Hydrogenation.
Catalysis Science and Technology, 2025, 15, 3544-3549.
T. Tsuda, S. Toyoda, H. Ishikawa, S. Yamaguchi, T. Mizugaki, T. Mitsudome
Featured on the inside front cover!
3) One-step Low-Temperature Synthesis of Metastable ε-Iron Carbide Nanoparticles with Unique Catalytic Properties Beyond Conventional Iron Catalysts
Small, 2025, 2412217. Published online
Y. Hirayama, A. Miura, M. Hirayama, H. Nakamura, K. Fujita, H. Kageyama, S. Yamaguchi, T. Mizugaki, T. Mitsudome
2) Highly Active and Air-stable Iron Phosphide Catalyst for Reductive Amination of Carbonyl Compounds Enabled by Metal-support Synergy
Journal of American Chemical Society, 2025, 147, 14326-14335.
T. Tsuda, H. Ishikawa, M. Sheng, M. Hirayama, S. Suganuma, R. Osuga, K. Nakajima, J. Nomura, S. Yamaguchi, T. Mizugaki, T. Mitsudome.
1) Reductive Amination of Triglycerides to Fatty Amines over a Titanium Oxide-supported Pt–Mo Catalyst
Organic and Biomolecular Chemistry, 2025, 23, 2638-2644.
K. Sakoda, H. Furugaki, S. Yamaguchi, T. Mitsudome, T. Mizugaki
Featured on the inside front cover!
2024
5) Air-stable and Highly Active Transition Metal Phosphide Catalysts for Reductive Molecular transformations.
T. Mitsudome
4) Highly Active and Sulfur-tolerant Ruthenium Phosphide Catalyst for Efficient Reductive Amination of Carbonyl Compounds.
ACS Catalysis, 2024, 14, 4501–4509.
H. Ishikawa, S. Yamaguchi, T. Mizugaki, T. Mitsudome
Featured in SYNFACTS (2024, 20(07), 0737)
3) Nickel Carbide Nanoparticle Catalyst for Selective Hydrogenation of Nitriles to Primary Amines.
Chemistry A European Journal, 2024, e202303573.
S. Yamaguchi, D. Kiyohira, K. Tada, T. Kawakami, A. Miura, T. Mitsudome, T. Mizugaki
2) Reductive Amination of Carboxylic Acids under H2 using a Heterogeneous Pt–Mo Catalyst.
Green Chemistry, 2024, 26, 2571-2576.
K. Sakoda, S. Yamaguchi, K. Honjo, Y. Kitagawa, T. Mitsudome, T. Mizugaki
Featured in SYNFACTS (2024, 20(06), 0625)
1) Efficient Protosilylation of Unsaturated Compounds with Silylboronates over a Heterogeneous Cu3N Nanocube Catalyst.
H. Xu, S. Yamaguchi, T. Mitsudome, T. Mizugaki
2023
3) Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation.
Nature Communications, 2023, 14, 5959.
T. Tsuda, M. Sheng, H. Ishikawa, S. Yamazoe, J. Yamazaki, M. Hirayama, S. Yamaguchi, T. Mizugaki, T. Mitsudome
2) Robust Ruthenium Phosphide Catalyst for Hydrogenation of Sulfur-Containing Nitroarenes
ACS Catalysis, 2023, 13, 5744–5751.
H. Ishikawa, N. Nakatani, S. Yamaguchi, T. Mizugaki, T. Mitsudome
Featured in SYNFACTS (2023, 19, 0705)
1) Copper nitride nanocube catalyst for the highly efficient hydroboration of alkynes
Organic & Biomolecular Chemistry, 2023, 21, 1404-1410.
H. Xu, S. Yamaguchi, T. Mitsudome, T. Mizugaki
2022
3) Green Oxidation of Indoles Using Molecular Oxygen over a Copper Nitride Nanocube Catalyst
Eur. J. Org. Chem., 2022, e20220826.
H. Xu, S. Yamaguchi, T. Mitsudome, T. Mizugaki
2) Selective Hydrodeoxygenation of Esters to Unsymmetrical Ethers over a Zirconium Oxide-Supported Pt–Mo Catalyst
K. Sakoda, S. Yamaguchi, T. Mitsudome, T. Mizugaki
1) Phosphorus-Alloying as a Powerful Method for Designing Highly Active and Durable Metal Nanoparticle Catalysts for the Deoxygenation of Sulfoxides: Ligand and Ensemble Effects of Phosphorus
H. Ishikawa, S. Yamaguchi, A. Nakata, K. Nakajima, S. Yamazoe, J. Yamasaki, T. Mizugaki, T. Mitsudome
2021
10) Hydrotalcite-Supported Cobalt Phosphide Nanorods as a Highly Active and Reusable Heterogeneous Catalyst for Ammonia-Free Selective Hydrogenation of Nitriles to Primary Amines
ACS Sustainable Chemistry & Engineering, 2021, 9, 11238–11246.
M. Sheng, S. Yamaguchi, A. Nakata, S. Yamazoe, K. Nakajima, J. Yamasaki, T. Mizugaki, T. Mitsudome
9) Efficient D-Xylose Hydrogenation to D-Xylitol over a Hydrotalcite-Supported Nickel Phosphide Nanoparticle Catalyst
European Journal of Inorganic Chemistry, 2021, 2021, 3327-3331.
S. Yamaguchi, T. Mizugaki, T. Mitsudome
8) A Copper Nitride Catalyst for the Efficient Hydroxylation of Aryl Halides under Ligand-free Conditions
Organic & Biomolecular Chemistry, 2021, 19, 6593-6597.
H. Xu, S. Yamaguchi, T. Mitsudome, T. Mizugaki
Featured in SYNFACTS (2021, 17, 1254)
7) A Nickel Phosphide Nanoalloy Catalyst for the C-3 Alkylation of Oxindoles with Alcohols
Scientific Reports, 2021, 11, 10673.
S. Fujita, K. Imagawa, S. Yamaguchi, J. Yamasaki, S. Yamazoe, T. Mizugaki, T. Mitsudome
6) Support-Boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol
ACS Sustainable Chemistry & Engineering, 2021, 9, 6347-6354.
S. Yamaguchi, S. Fujita, K. Nakajima, S. Yamazoe, J. Yamasaki, T. Mizugaki, T. Mitsudome
5) Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds
JACS Au, 2021, 1, 501-507. (open access)
M. Sheng, S. Fujita, S. Yamaguchi, J. Yamasaki, K. Nakajima, S. Yamazoe, T. Mizugaki, T. Mitsudome
4) Air-stable and Reusable Nickel Phosphide Nanoparticle Catalyst for the Highly Selective Hydrogenation of D-Glucose to D-Sorbitol
Green Chemistry, 2021, 23, 2010-2016. (free to access until the end of June/2021)
S. Yamaguchi, S. Fujita, K. Nakajima, S. Yamazoe, J. Yamasaki, T. Mizugaki, T. Mitsudome
3) H2-Free Selective Dehydroxymethylation of Primary Alcohols over Palladium Nanoparticle Catalysts
ChemCatChem, 2021, 13, 1135-1139.
S. Yamaguchi, H. Kondo, K. Uesugi, K. Sakoda, K. Jitsukawa, T. Mitsudome, T. Mizugaki
2) Ni2P Nanoalloy as an Air-Stable and Versatile Hydrogenation Catalyst in Water: P-Alloying Strategy for Designing Smart Catalysts
Chemistry - A European Journal, 2021, 27, 4439-4446.
S. Fujita, S. Yamaguchi, J. Yamasaki, K. Nakajima, S. Yamazoe, T. Mizugaki, T. Mitsudome
Featured in SYNFACTS (2021, 17, 0800)
1) Air-Stable and Reusable Cobalt Phosphide Nanoalloy Catalyst for Selective Hydrogenation of Furfural Derivatives
ACS Catalysis, 2021, 11, 750-757.
H. Ishikawa, M. Sheng, A. Nakata, K. Nakajima, S. Yamazoe, J. Yamasaki, S. Yamaguchi, T. Mizugaki, T. Mitsudome
Featured in SYNFACTS (2021, 17, 432)
2020
3) Nickel Phosphide Nanoalloy Catalyst for the Selective Deoxygenation of Sulfoxides to Sulfides under Ambient H2 Pressure
Organic & Biomolecular Chemistry, 2020, 18, 8827-8833.
S. Fujita, S. Yamaguchi, S. Yamazoe, J. Yamasaki, T. Mizugaki, T. Mitsudome
Featured in SYNFACTS (2021, 17, 193)
2) A Cobalt Phosphide Catalyst for Hydrogenation of Nitriles
Chemical Science, 2020, 11, 6682-6689.
T. Mitsudome, M. Sheng, A. Nakata, J. Yamasaki,T. Mizugaki, K. Jitsukawa
Featured in SYNFACTS (2021, 16, 1208)
1) Unique Catalysis of Nickel Phosphide Nanoparticles to Promote the Selective Transformation of Biofuranic Aldehydes into Diketones in Water
ACS Catalysis, 2020, 10, 4261-4267.
S. Fujita, K. Nakajima, J. Yamasaki, T. Mizugaki, K. Jitsukawa, T. Mitsudome
Highlighted in ChemistryViews!
2019
4) Development of High Performance Heterogeneous Catalysts for Selective Cleavage of C-O and C-C Bonds of Biomass-derived Oxygenates
Chemical Record, 2019, 19, 1179-1198.
T. Mizugaki, K. Kaneda
3) Air-stable and reusable cobalt ion-doped titanium oxide catalyst for alkene hydrosilylation
Green Chemistry, 2019, 21, 4566-4570.
T. Mitsudome, S. Fujita, M. Sheng, J. Yamasaki, K. Kobayashi, T. Yoshida, Z. Maeno, T. Mizugaki, K. Jitsukawa, K. Kaneda
DOI: 10.1039/c9gc01981b
2) Design of High-Performance Heterogeneous Catalysts Using Hydrotalcite for Selective Organic Transformations
Green Chemistry, 2019, 21, 1361-1389.
K. Kaneda, T. Mizugaki
DOI: 10.1039/c8gc03391a
1) Efficient synthesis of benzofurans via cross-coupling of catechols with hydroxycoumarins using O2 as an oxidant catalyzed by AlPO4-supported Rh nanoparticle
ChemistrySelect, 2019, 4(38), 11394-11397.
Z. Maeno, M. Yamamoto, T. Mitsudome, T. Mizugaki, K. Jitsukawa
DOI: 10.1002/slct.201903117