

Turbulent effect on selforganized structure formation in phase separation system

Okano laboratory

Phase separation: spinodal decomposition

Phase separation: spinodal decomposition

Previous studies

Theory & experiment

Author	Year	Remark
Ruiz & Nelson	1981	Energy cascade
Aronovitz & Nelson	1984	Energy cascade, quench
Pine et al.	1984	Light scattering exp.
Tanaka	~ Present	Temp. quench, visoelastic

Numerical simulation

Author	Year	Dimension	Method
Berti <i>et al</i> .	2005	2D	Spectral
Kendon <i>et al</i> .	1999,2000,2001	3D	LBM
Perlekar <i>et al</i> .	2013	3D	LBM

Objective

- Relation between turbulent suppression by phase separation and energy cascade
- Analogy between self-organized structure by spinodal decomposition and coherent eddy structures in turbulence

Method:

•Three-dimensional simulation for homogeneous isotropic turbulence with phase separation

Simplified model (Diffusion type)

- Order parameter (phase field): $\psi(\mathbf{r},t) \equiv \left[\rho_A(\mathbf{r},t) - \rho_B(\mathbf{r},t)\right] / \rho_0$
- Diffusion equation:

$$\frac{\partial \Psi}{\partial t} + (\mathbf{v} \cdot \nabla) \Psi = D \nabla^2 \Psi$$

• Navier-Stokes equation:

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho_0} \nabla p' - \alpha \nabla \psi^2 \nabla \psi + \nu \nabla^2 \mathbf{v} + \mathbf{f}$$

f = 0: Decaying flow

<u>See abstract</u>

Numerical model (phase separation under flow)

• Navier-Stokes equation

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = -\frac{1}{\rho_0}\nabla p' - \xi^2 \nabla^2 \psi \nabla \psi + \nu \nabla^2 \mathbf{v} + \mathbf{f}$$

• Continuity equation $\nabla \cdot \mathbf{v} = 0$

$$\mathbf{f} = \begin{cases} Q\mathbf{v} & \text{Linear forcing} \\ 0 & \text{Decaying flow} \end{cases}$$

• Cahn-Hilliard equation

 $\frac{\partial \psi}{\partial t} + (\mathbf{v} \cdot \nabla) \psi = \Gamma \nabla^2 \mu$ $\mu = -\psi + \psi^3 - \xi^2 \nabla^2 \psi$

Parameters

$$v = 2.5 \times 10^{-3} (v/\Gamma = 0.1)$$

 $Q = 0.25 (Re_{\lambda} \sim 75)$
 $\xi = 1.0 \times 10^{-3}$
 $\rho_0 = 1$

Numerical conditions

Analysis model Homogeneous isotropic turbulence Mixture **Binary mixture** Initial concentration 50%-50% 2π×2π×2π Domain size Boundary condition Periodic on all the sides. Grid points 256³ $\Delta t = 4.0 \times 10^{-3}$ **Time increment** Initial condition of ψ white noise

Runs	Velocity forcing	Phase separation
1	OFF (Stationary)	ON
2	Turbulence	OFF (Single component)
3	Turbulence	ON

Phase separation without flow field

SAKA UNIVERSITY

Order parameter distribution on a *x*-*y* plane

Suppression of vortex formation by phase separation

Vorticity (z-component) distribution on a x-y plane at t = 5.0

Without phase separation effect

 ω_z 15 -15With phase separation effect Vortex tube structure (red line contour of Q = 100): second invariant of velocity gradient tensor

$$Q = \frac{1}{2} (|\Omega|^2 - |S|^2)$$

 Ω_{ij} : Vorticity tensor S_{ij} : Strain rate tensor

Suppression of vortex formation by phase separation

Conclusions

 Turbulent vortex structure was more coarse in phase-separating mixture.

Phase separation

Turbulenc

Self-organization structure can be selectively formed by turbulent field.

