Study on self-propelled droplet due to Marangoni effect

Okano laboratory

Marangoni effect

Difference of interfacial tension arises from concentration and temperature difference.

Marangoni convection is caused by the interfacial tension difference.

Surfactant

DEHPA (Di (2-ethylhexyl) phosphoric acid)

DEHPA deprotonates in high pH region.

Interfacial tension changes dramatically.

Self-propelled droplet

Oil droplet with DEHPA in aqueous solution

Trajectory of droplet movement

Mechanism of the motion

DEHPA deprotonates.

Interfacial tension changes locally.

Marangoni convection is caused.

Droplet moves due to the convection.

Functionality of droplet

Chemotactic property function

Random motion of droplet

Directionality to the metal ion

Switching function of droplet motion

Droplet moves in specific pH region.

DEHPA has a affinity for metal ion.

Our tasks

• To clarify the mechanism of the droplet motion in the presence of metal ions.

• To investigate the possible of extraction into a droplet

for rare earth.

ı H																	2
зLi	4 Be											5 B	6 C	7 N	8 O	9 F	1
11 N a	12 M g											13 Al	14 Si	15 P	16 S	17 CI	1
19 K	20 Ca	21 Sc	22 T i	23 V	24 Cr	25 M n	26 Fe	27 C 0	28 N i	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	3
37 Rb	38 S r	39 Y	40 Z r	41 N b	42 M O	43 Tc	44 Ru	45 Rh	46 Pd	47 A g	48 Cd	49 ln	50 Sn	51 Sb	52 Te	53 l	5
55 Cs	56 Ba	57-71 ランタノイド	72 H f	73 Ta	74 W	75 Re	76 O S	77 I r	78 Pt	79 A u	80 Hg	81 TI	82 Pb	83 B i	84 P 0	85 At	8
87 F r	88 <mark>Ra</mark>	89-103 7'9F/4F															
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 <mark>Am</mark>	96 Cm	97 Bk	98 C f	99 Es	100 Fm	101 Md	102 N O	103 Lr	

Application

China

The world's largest rare earth producer

Problems

- → Rare earth mines also include radioelements.
- → Extraction solvent causes ground pollution.

Challenge

Technical development for autonomous extraction and separation of rare earth under poor working conditions

