Study on self-propelled droplet due to Marangoni effect Okano laboratory # Marangoni effect Difference of interfacial tension arises from concentration and temperature difference. Marangoni convection is caused by the interfacial tension difference. # **Surfactant** DEHPA (Di (2-ethylhexyl) phosphoric acid) DEHPA deprotonates in high pH region. Interfacial tension changes dramatically. # Self-propelled droplet Oil droplet with DEHPA in aqueous solution Trajectory of droplet movement ## Mechanism of the motion **DEHPA** deprotonates. Interfacial tension changes locally. Marangoni convection is caused. Droplet moves due to the convection. # **Functionality of droplet** #### Chemotactic property function Random motion of droplet Directionality to the metal ion #### Switching function of droplet motion Droplet moves in specific pH region. DEHPA has a affinity for metal ion. ## Our tasks • To clarify the mechanism of the droplet motion in the presence of metal ions. • To investigate the possible of extraction into a droplet for rare earth. | ı H | | | | | | | | | | | | | | | | | 2 | |---------------|--------------------|-------------------|---------------|---------------|---------------|---------------|---------------|--------------------|---------------|---------------|---------------|--------------|---------------|---------------|----------------|---------------|---| | зLi | 4 Be | | | | | | | | | | | 5 B | 6 C | 7 N | 8 O | 9 F | 1 | | 11 N a | 12 M g | | | | | | | | | | | 13 Al | 14 Si | 15 P | 16 S | 17 CI | 1 | | 19 K | 20 Ca | 21 Sc | 22 T i | 23 V | 24 Cr | 25 M n | 26 Fe | 27 C 0 | 28 N i | 29 Cu | 30 Zn | 31 Ga | 32 Ge | 33 As | 34 Se | 35 Br | 3 | | 37 Rb | 38 S r | 39 Y | 40 Z r | 41 N b | 42 M O | 43 Tc | 44 Ru | 45 Rh | 46 Pd | 47 A g | 48 Cd | 49 ln | 50 Sn | 51 Sb | 52 Te | 53 l | 5 | | 55 Cs | 56 Ba | 57-71
ランタノイド | 72 H f | 73 Ta | 74 W | 75 Re | 76 O S | 77 I r | 78 Pt | 79 A u | 80 Hg | 81 TI | 82 Pb | 83 B i | 84 P 0 | 85 At | 8 | | 87 F r | 88 <mark>Ra</mark> | 89-103
7'9F/4F | | | | | | | | | | | | | | | | | | | 57 La | 58 Ce | 59 Pr | 60 Nd | 61 Pm | 62 Sm | 63 Eu | 64 Gd | 65 Tb | 66 Dy | 67 Ho | 68 Er | 69 Tm | 70 Yb | 71 Lu | | | | | 89 Ac | 90 Th | 91 Pa | 92 U | 93 Np | 94 Pu | 95 <mark>Am</mark> | 96 Cm | 97 Bk | 98 C f | 99 Es | 100 Fm | 101 Md | 102 N O | 103 Lr | | # **Application** # China The world's largest rare earth producer #### **Problems** - → Rare earth mines also include radioelements. - → Extraction solvent causes ground pollution. #### Challenge Technical development for autonomous extraction and separation of rare earth under poor working conditions