Crystal growth

- Complex transport phenomena (mass, heat, momentum)
- Interfacial phenomena between different phases:
 - o Marangoni convection
 - o Stress relaxation

- Control method of transport phenomena :
 - Rotation
 - o Magnetic field
 - o Electronic field

Alloy semiconductor

Alloy semiconductor (InGaSb, SiGe, CdZnTe, etc.)

Advantage

- Variable composition ratio. Controllable wavelength and lattice constant

 \rightarrow New photo-voltaic device

Problem

- Separated solidus/liquidus lines
- Density difference
- Different melting point

Difficult to grow a high quality crystal because of segregation and convection

Microgravity experiment at ISS

Generalization of crystal growth method for alloy semiconductor

→ Understanding of growth kinetics

> High cost Few chances

1G preliminary experiment

- Convection
- Gravity segregation

 μ G experiment

- Diffusion
- Calm on interface

N. Armour et al, J. Crystal Growth, 299, pp. 227-233 (2007).

Problems

Dissolution process of In_xGa_{1-x}Sb

Hayakawa et al., Private Communication (December 2012)

InGaSb Alloy

SiGe

Dissolution

Heating rate : 5 °C/min

Composition of Si at the center

